CS204

Roll No. :

2019

BASICS OF ELECTRONIC DEVICES AND CIRCUITS

निर्धारित समय : तीन घंटे] [अधिकतम अंक : 70 Time allowed : Three Hours] [Maximum Marks : 70

- नोट : (i) प्रथम प्रश्न अनिवार्य है, शेष में से किन्हीं **पाँच** के उत्तर दीजिये।

 Note: Question No. 1 is compulsory, answer any FIVE questions from the remaining.
 - (ii) प्रत्येक प्रश्न के सभी भागों को क्रमवार एक साथ हल कीजिये। Solve all parts of a question consecutively together.
 - (iii) प्रत्येक प्रश्न को नये पृष्ठ से प्रारम्भ कीजिये। Start each question on fresh page.
 - (iv) दोनों भाषाओं में अन्तर होने की स्थिति में अंग्रेजी अनुवाद ही मान्य है। Only English version is valid in case of difference in both the languages.
- (i) BJT ट्रांजिस्टर के कार्य विन्यास लिखिए।
 Write the working modes of BJT transistor.
 - (ii) वेरेक्टर डायोड का प्रतीक बनाइए एवं कोई दो उपयोग लिखिए। Draw the symbol of varactor diode and write its two applications.
 - (iii) ट्रांजिस्टर में प्रयुक्त कोई दो अभिनति प्रतिकरण तकनीकों के नाम लिखिए। Write name of any two biasing compensation techniques used in transistor.
 - (iv) SMPS एवं UPS में कोई दो अन्तर बताइए। Give the two differences between SMPS and UPS.
 - (v) अभिनति स्थायित्व को परिभाषित कीजिए।

 Define bias stabilization.
- 2. (i) हॉल प्रभाव को समझाइए एवं इसके कोई दो उपयोग बताइए। Explain Hall effect and also give its any two applications.
 - (ii) जीनर डायोड की कार्यप्रणाली, अभिलक्षण एवं उपयोग समझाइए । Explain the working, characteristics and applications of zener diode. (6×2)

(1 of 4) P.T.O.

 (2×5)

- 3. (i) ट्रांजिस्टर के CE विन्यास में निवेश एवं निर्गत अभिलक्षण खींचकर इसे समझाइए।

 Draw and explain the input and output characteristics of CE configuration of transistor.
 - (ii) α , β एवं γ में सम्बन्ध स्थापित कीजिए । Derive the relation between α , β and γ .

 (6×2)

- 4. (i) एक ट्रांजिस्टर परिपथ को चित्र (1) में दर्शाया गया है जिसमें R_C $4~{\rm k}\Omega$ दिया गया है जबिक प्रचालन धारा (शून्य सिग्नल कलेक्टर धारा) $1~{\rm mA}$ है ।
 - (a) प्रचालन बिन्दु क्या होगा यदि $V_{CC} = 10 \text{ V}$?
 - (b) प्रचालन बिन्दु क्या होगा यदि $R_C = 5 \ k\Omega$?

In a transistor circuit shown in figure (1) where R_C is 4 $k\Omega$ whereas quiscent current (zero signal collector current) is 1 mA.

- (a) What will be operating point if $V_{CC} = 10 \text{ V}$?
- (b) What will be the operating point if $R_C = 5 \text{ k}\Omega$?

(3+3)

(ii) अभिनति स्थायित्व को प्रभावित करने वाले कारकों को समझाइए। Explain the factors affecting bias stability.

(6)

- 5. (i) E-MOSFET एवं D-MOSFET की कार्यप्रणाली में अन्तर स्पष्ट कीजिए। Explain the difference between working of E-MOSFET and D-MOSFET.
 - (ii) JFET के साथ उपयोग होने वाली टर्मिनोलोजी की व्याख्या कीजिए । n-चैनल एवं p-चैनल JFET के संकेत भी बनाइए ।

Discuss the terminology used with JFET. Also draw symbols of n-channel & p-channel JFET. (6×2)

 (6×2)

(iii) π-फिल्टर

π-filter